EV Basics II – An Electric Vehicle Primer

Important Acronyms:

BEV – Battery electric vehicle, a vehicle which uses only batteries and one or more motors to provide the force that makes it go.

EV – Electric vehicle, any vehicle that uses electric power to provide some or all of its propulsive force.

FCEV – Fuel cell electric vehicle, an electric vehicle which uses a hydrogen fuel cell as its source of electric power.

HEV – Hybrid electric vehicle, a car or truck that uses both an ICE and an electric motor.

ICE – Internal combustion engine, the powerplant of choice for the dirty, inefficient vehicles of the 20th Century.

PHEV – Plug-in hybrid vehicle, a hybrid vehicle with a battery pack that can be charged from a wall socket.

Have you just developed an interest in electric vehicles? Are you looking to learn some EV fundamentals? You’ve come to the right place! Read on, and you will start your education on the wonders of EVs. In this article, I will introduce readers to some of the various different types of EVs and explaing some of the advantages and issues associated with each type. Note that this article is only an introduction. I will go into more depth on different aspects of the subject matter in future installments of the “EV Basics” series.

There are several different power trains available which use electric motors. The simplest of these vehicles is the battery electric vehicle or BEV. This is a pure electric vehicle which uses only a battery pack and an electric motor to store energy and create the power necessary to make the car or truck move. BEVs have been around for a long time. In 1835, Thomas Davenport built a railway operated by a small electric motor. In the early years of the 20th Century, BEVs competed quite successfully with ICE-powered vehicles. It was not until Henry Ford started building the Model T that gasoline-powered cars that BEVs faded from public view.

In the 1960s, BEVs began to make a comeback. Interest in electric vehicles has grown steadily since then as concerns about pollution and dependence on foreign oil have permeated mainstream consciousness. Currently, BEVs are being designed and built in a wide variety of styles and layouts, from electric scooters, to low-speed electric cars such as those produced by Zenn Motor Company, to high-power freeway burners such as the two-seat Tesla Roadster or the family-friendly, five-passenger eBox by AC Propulsion.

BEVs must face a few hurdles if they are to replace ICE-only cars as our primary method of transportation. Historically, they have had limited driving range, significantly less than the range of a gasoline-powered car. Additionally, BEV have generally taken several hours to recharge the battery pack. In a world in which people have gotten used to instant gratification, this poses a real problem. The good news is that many people are working on these issues, and dramatic improvements are being made in both range and recharging time. Current EV designs have achieved ranges of more than 300 miles and charging times have been brought down to two hours or less in some models charged with high-powered “smart” chargers.

In the 1990s, Honda and Toyota introduced the American driving public to the hybrid electric vehicle or HEV. These vehicles use both an ICE and an electric motor. There are different types of HEVs which layout the engine and the motor in either a parallel or a series configuration. In a series configuration, the ICE acts only as an electrical generator. In a parallel configuration the ICE again acts as a generator, but it also drives the vehicle’s wheels just as the engine would do in an ICE-only vehicle.

HEVs provide significant benefits over ICE-only cars in two distinct areas. Firstly, the electric motor allows engineers to operate the ICE more efficiently because an HEV can rely heavily on the electric motor at points in which the ICE would be operating very inefficiently. Secondly, the battery pack in an HEV can be used to recapture the energy used while braking. To accomplish this, engineers create regenerative braking systems which used the electrical resistance of a generator to slow the car down long before they mechanical brakes come into play. The energy from the generator is then stored in the battery pack for future use. In a car without regenerative braking, all this energy is wasted by creating heat and wearing down the brake pads.

HEVs also have some problems. Unlike BEVs, they require some gasoline or other liquid fuel to operate. Also, they are more complicated then either a BEV or an ICE-only vehicle because they require both types of drivetrain components under one hood. However, they eliminate the range and recharging issues associated with BEVs, so HEVs can be viewed as a good transition step to the vehicles of the future.

Recently, much attention has been paid to plug-in hybrids or PHEVs. In essence, a PHEV is an HEV with a larger battery pack, a plug which allows the battery pack to be charged from a wall socket, and a control system which allows the vehicle to be operated in electric-only mode. The wall-charging feature allows a PHEV to get some of its power from the utility grid (or from a local power source such as a photovoltaic array or wind turbine) and some of its power from gasoline. Recently, several companies and individuals have been working on creating plug-in versions of the Toyota Prius. These conversions allow the Prius to run in all-electric mode until it reaches roughly 35mph. They give varying traveling ranges in all-electric mode, depending on which type of batteries are used and how many extra batteries are installed.

While these plug-in Priuses are a good start, PHEVs as a genre have even more potential. General Motors recently introduced the Chevrolet Volt E-Flex concept car, a PHEV which can travel up to 40 miles in electric only mode. It has a large electric motor and a one liter, three cylinder ICE. PHEVs of the future could follow this trend even further, maximizing the electric elements of the drivetrain while reducing the ICE to a tiny power plant which gets used only as a last resort.

In the last few years, fuel cell electric vehicles or FCEVs have grabbed many headlines. These are electric vehicles which use a hydrogen fuel cell to provide power, eliminating the need for a battery pack. Proponents point out that hydrogen is the most abundant of the chemical elements and that the only gas emitted from an FCEV is steam made from pure water. Detractors point out that nearly all hydrogen currently available is made from natural gas, a petroleum product. Hydrogen is also difficult to store in quantities sufficient to give FCEVs adequate range and it can present safety hazards when pressurized in tanks. Finally, FCEVs currently require complex, bulky support systems which take up excessive space and result in power delivery systems which are far less efficient than those present in BEVs.

Fuel cells have some potential to become part of the overall energy scenario in the future. However, many feel that FCEVs have been used primarily as a distraction and a stalling device. Companies and politicians keep telling us, “We’ll have FCEVs in the near future, but until then keep driving your Hummers!” These tactics keep people from demanding BEVs as soon as possible. As one saying puts it, “Practical, viable fuel cells are ten to twenty years away, and they always will be.”

One other type of electric vehicle is the human-assist hybrid. The most common example of this vehicle type is the electric bicycle. These are commonly-available, inexpensive, and they give people the health benefits associated with exercise while providing an additional boost when needed. Legally, they must be limited to 20 mph in electric assist mode, and the electric-only range of electric bikes now available is almost always less than twenty miles.

However, readers should ponder the fact that a small, aerodynamic vehicle can cruise at 65 mph on a flat road while using only five horsepower. Imagine the roads covered with small, efficient vehicles that use tiny electric motors and human power to achieve freeway speeds without putting a significant burden on the utility grid. While no major corporations are working on vehicles like this, small groups of dedicated individuals are working to make this type of vehicle available to the general public. These low-power vehicles could become the ultimate transportation solution for an energy-conscious society.

So there you have it! You now have enough information to join EV-related conversations at your next social gathering. You can talk about the different types of EVs, letting people know what is available now and what is coming in the near future. If you are still curious for more details on the benefits of electric vehicles and the advances which are being made in the field, please see the other articles in this “EV Basics” series.

What is an Electric Vehicle Conversion Specialist

Electric vehicle conversion refers to the modification of a conventional internal combustion engine or the ICR driven vehicle to one that is battery electric propulsion, thus creating a battery electric vehicle.

The career outlook for an Electric Vehicle Conversion Specialist is good. They make on average $39-$59 thousand a year. Electric vehicles are quickly becoming a mainstay in the auto arena.

Many major automobile manufacturers in the US have started performing ICE conversions, but due to lack of consumer demand, the programs had been terminated. However, a few re-builders specializing in electric car conversion have started offering new or remanufactured conversion to satisfy the limited demand. One major reason for the rather low demand is the high price of completed vehicles, which can double the price of a comparable ICE vehicle.

Why It’s Green

People who have owned and used electric vehicles points out that the ranges of these cars are adequate, and that it is more convenient to simply plug the car for charging rather than driving to get some gas. Aside from these, electric vehicles are also quiet if not totally silent and they are non-polluting because they use renewable energy rather than gas, which produces air pollutants.

Professional and Personal Qualities

Generally, people without experience or modest knowledge in mechanics and electrical devices should not attempt to maintain or operate a ‘home made’ electric vehicle.

A career as Electric Vehicle Conversion Specialist is hard to come by in most states due to the lack of demand for electric vehicles. But in some places, and where companies manufacture electric vehicles, an electric car conversion specialist may be highly demanded.

Skills and Trainings

If you are planning to become an electric vehicle conversion specialist, you need a wide range of skills to be able to perform your duties. For instance, you’d need to have knowledge on automobile surveying and be able to identify problems in potential conversion vehicles. Such skill will be required to identify and purchase a good used ICE vehicle and will come handy especially when the conversion is done by another builder.

Aside from that, basic mechanics knowledge is also required as a builder should be able to manufacture small brackets for mounting sensors, switches and relays. Some other required skills and training for would-be electric car conversion specialists should include machine shop skills, welding, automotive mechanics, basic electric skills, as well as basic electronic skills.

Online Auto Parts Or Local Auto Parts Store – Where Should I Buy Car Parts?

You are driving your pride and joy through the parking lot on a Saturday and people are admiring your car as they should; you have just detailed the whole vehicle and it’s looking its best. Then you step on the brakes, a couple of people look at you in disgust and the smaller children are covering their ears and whining to their parents as your low brake pad indication squealers are rubbing on the brake rotors. It’s time for a brake job, and you don’t let anyone touch your car so you are going to do it yourself. You have a couple of options. You could drive to the closest dealership and get OEM pads; this will typically cost you an arm and a leg. You could drive to the local auto parts place and save a bit of money on an aftermarket set of brake pads that will likely work just as well. Another option is buying from an online auto parts store.

The online format of business has several advantages, the first is location. The warehousing for an online car parts store does not need to be located in prime real estate. It does not have to be easily accessible to highly populated areas because it does not require the convenience of location to do the majority of its business. A franchised retail outlet on the other hand does. And that convenience comes at a price which is essentially passed along to the consumer.

There are a variety of online sites that specialize in replacement parts. Although each company is unique on its own there are three main formats that are easily identifiable in the realm of replacement car parts. The most common is the company that tries to stock just about every part available. They carry all sorts of brands, give you a variety of options and can usually still beat the prices of anything locally. The simple fact that the company providing the auto part has to stock another company’s car part is a reason for a price mark-up. And this is the same basic idea for some of the specialized auto part sites. Let’s take Volkswagen for example. There are some car parts sites that are run by VW enthusiasts and they specialize in the parts that are available for Volkswagens, this way they can cater to a targeted audience.

There are certain companies that only sell their own brand of auto parts. This means they do not have a retail markup that includes a markup to cover distribution of the parts from the manufacturer to one company and then to another. This lets the company that only sells its own auto parts offer them for much cheaper and still make enough of a profit level to remain in business. A company like this will specialize in the car parts that have the most crossover applications, i.e. the same part fits several vehicles, and the most commonly replaced auto parts. These are car parts like brake parts, hub bearings, struts, strut assemblies, and other frequently changed maintenance parts. A good example of a company like this is Prime Choice Auto Parts.

Vehicle to Grid – How Electric Vehicles Interact With a Smart Power Electricity Network

What is Vehicle to Grid
Also called Vehicle 2 Grid or V2G, Vehicle to Grid is the process of connecting your electric car into the transmission electricity network. If you have an electric vehicle then you will definitely want to consider setting up V2G through a simple metering system and contract with your local electricity supplier.

What do I need to consider before deciding to connect my vehicle to the grid?

  • Firstly you have to have an electric car which can be charged by a standard electricity outlet.
  • The second thing you will want to do is determine some basic driving habits – i.e. if you drive almost your entire vehicle range to work and back every day, then there is unlikely to be much energy left over to swap between your battery and the grid, which makes setting up V2G a little redundant
  • Having decided that V2G connectivity is possible and feasible, you will need to look at the right products on the market to help you achieve this. I.e. which inverter should be used and which electricity trading contract will suit your needs the best?
  • If you decide suddenly that V2G is not good for you, how can you get out of an otherwise more expensive contract?

Once these basic items have been checked off the list, it is time to call up your utility and start the process of applying for V2G. You can then purchase a suitable inverter which allows you to feed back into the grid (this will be similar if not identical to the type of inverters used on solar PV grid connected power supplies). Of course you will have to decide what sized inverter to go for.

For example, a 5kW inverter may cost $1000 and a 2kW inverter may cost $600. Therefore you have to be sure that you can recover the $400 over being able to sell a higher rate of electricity in peak times. Some simple maths will help you work out the optimal solution, but just be aware of the various pay offs for each option.

Why is Vehicle to Grid (V2G) Good?
Vehicle to Grid applications have a number of benefits for all sorts of businesses and stakeholders. Vehicle to Grid (V2G):

  • Empowers the home consumer to make sensible choices about when they use their electricity through smart metering
  • saves the consumer money in the long run through effective electricity management
  • is green! Every time you supply the grid with electricity during the yearly peak energy demand, you are reducing the need to upgrade the electricity network with more transmission lines and generators
  • You are helping to bring electric vehicles (EV’s) onto the market
  • You are reducing your carbon footprint! This is a big ones these days
  • The electricity company can save money and reduce their unit electricity prices, or reduce the need to increase them
  • reduce the amount of electricity transmission line needed. I.e. the car transports the electricity to where it is needed.
  • Cuts down on the amount of fuel stations required
  • Reduces our addiction to foreign oil through the accelerated introduction of electric vehicles and ability to replace fossil fuel generation with renewable energy generation.
  • Allows more sustainable energy and renewable energy to be introduced onto the electricity grid, as electric vehicle batteries can now act as a buffer to intermittent generation.

The last point is an important one. Traditional transmission networks are struggling to cope with large percentages of intermittent renewable and sustainable energy generation, as electricity generation from these sources is largely dependent on the elements. Therefore to have the ability to store electricity somewhere is important. In many countries power utilities are approaching this by pumping water up a hill and regenerating during peak times (~60% efficiency) or storing hydrogen formed by electrolysis underground ready for re generation (~40% efficiency). Storing electricity in batteries is a much higher efficiency (60% – 90%) however is a little costly.

Japan uses large battery sheds to store small amounts of energy, however vehicle to grid systems also work very well as storage mechanisms and are likely to play this role in the future as more electric vehicles hit the market. How soon we will see such networks will largely rely on the countries commitment to renewable and sustainable energy sources, as well as the abundance of wind, sun and wave energy. Although many companies claim to have a green lining, short term economics of such projects still remains the number one driver for the introduction of such technology.

The advantage to the end consumer who is running a vehicle to grid system is the savings in electricity for essentially hiring out the storage space in their electric car battery. So as we can see, it is a win win for many as it not only reduces the stress on our electricity transmission and generation networks, allows more sustainable energy to be placed on the system with lower carbon emissions, but also saves the end user money whilst making electric vehicles more affordable. It also weans us off our foreign oil addiction through the cost effective introduction of electric vehicles, a topical issue as we approach peak oil status around the world.

For more information you may want to consult your electricity network to find out about their smart metering tariffs. You will also want to look into the purchase of an electric vehicle, or an electric vehicle conversion in able to make use of the vehicle-2-grid (V2G) technology. I guess we can all look forward to a cleaner, greener, cheaper carbon restrained future, and V2G is going to help us get there in a big way!

The Basic Technical Specification Of RC Electric Vehicles Simplified For Beginners

When you are browsing RC automobiles online and decide to check the details of an RC electric vehicle that you are interested in (let’s suppose it is an high speed on road racing car), this is what you will likely be presented with, if you are on a quality, customer-focussed website, that is:

– SP28404 brushless motor
– SP28405 brushless electronic speed control
– Anodized aluminium centre drive joint
– Compact front/rear differentials
– Suspension arms with adjustable Width
– Anodized aluminium radio tray
– Solid shock towers and front/rear bumper
– High quality on-road tires with chrome sprayed rims
– 7.2v 1100mah Ni-Mh battery power required
– 7.2v 1500mah Ni-Mh battery or 7.4v 1300mah lithium battery pack is optional
– Anodized aluminium motor heat guard
– High duty front bumper foam provides
– Vehicle length: 265 mm
– Vehicle Width: 140 mm
– Height: 80 mm
– Wheelbase: 174 mm
– Track Width: 77 mm (F/R)
– Gear Ratio: 10.6:1
– Ground Clearance: 8mm
– Net Weight: 790g
– Wheel Diameter: 49mm
– Wheel Width: 18mm

How do you make head or tail of this fairly detailed specification for your rc electric vehicle, without it resulting in your eyes glazing over? Help is at hand right here. Let us go through these features one by one and you will be overjoyed with enlightenment.

SP28404 brushless motor
This is the latest, more advanced, powerful type of motor, which is reflected in the overall (higher) starting price of the automobile in which it is fitted. The benefits to you are a potentially speedier, more dynamically efficient RC vehicle, with the added bonus that it should be simpler to maintain. RC automobiles with brushed motors however, are the classic, conventional types.

SP28405 brushless electronic speed control
The RC electric vehicle’s speed is regulated with an electronic speed controller (abbreviated to ESC). This is the component that controls the drive motor mentioned above, together with the general electronics. Most automobiles come integrated with the motor and ESC, but are separate purchases in the more enhanced set-ups.

Anodized aluminium centre drive joint
More commonly known as the RC electric vehicle’s drive shaft, this is the central rod that runs from the front to the rear of the automobile. Being made of aluminium makes it lighter without compromising on the vehicle’s overall stability and sturdiness.

Compact front/rear differentials
A differential is a device that in most cases incorporates gears and is designed to drive each pair of front and rear wheels with equal force, but still allows the wheels to rotate at different speeds. Differentials on good electric vehicles are high performance.

Suspension arms with adjustable Width
The suspension arms provide your RC vehicle with powerful cushioning, as in a conventional car. Being adjustable allows the vehicle to be driven at optimum suspension on different terrains, especially when running over bumpy or rocky ground and when turning corners.

Anodized aluminium radio tray
This is tray that houses the in-built radio receiver in your RC vehicle. Being anodized gives it increased corrosion and wear resistance, making it harder than bare aluminium.

Solid shock towers and front/rear bumper
Integrated with the suspension system, the shock towers provide a damping effect on the overall vehicle suspension.

High quality on-road tires with chrome sprayed rims
The specification for this RC electric vehicle relates to an on road racing car. The makeup of the tires is important here. It is like differentiating between a mountain bike, with its thick, knobbly, high-friction tires and a road bike, with its slimmer, low-friction tires and a less prominent tread. It all comes down to performance requirements on the terrain that the RC vehicle was designed/intended to run on. The chrome rims adds a splash of quicksilver that finishes off the wheels nicely.

7.2v 1100mAh Ni-Mh battery power (required), 7.2v 1500mah Ni-Mh battery or 7.4v 1300mah lithium battery pack (optional)
7.2-volt nickel cadmium batteries are standard power sources, often referred to as battery packs. Although they are identical in size, they differ in capacities ranging up to 3700mAh typically. As the battery pack is extra, it is advisable to go for the largest capacity that you can afford, if you desire more running time (the downside is that you’ll need more time to charge it up).

Anodized aluminium motor heat guard
Unsurprisingly, your RC electric vehicle’s motor will get very hot. The guard thankfully provides protection against heat, which results from high speed running.

High duty front bumper foam
As with conventional, real-world automobiles, the front foam bumper needs to deliver maximum protection to your RC vehicle against impacts.

Vehicle dimensions
Length, width, height, ground clearance, net weight, wheel diameter and wheel width are self-explanatory.
Your RC electric vehicle’s wheelbase will be the length from the leading edge of its front wheels to the trailing edge of its rear wheels.

Track
Track refers to track width, the distance between the center of the left tire and the center of the right tire.

Gear Ratio
This is the relationship between the numbers of teeth on two gears that are meshed or two sprockets connected with a common roller chain, or the circumferences of two pulleys connected with a drive belt.

So, there you have it. We’ve just covered some of the basic technical terms that you are likely to come across when you are enjoying your time shopping for your future RC electric vehicles. Whatever you do, don’t be fazed by these terms – think of it as an educational experience, a journey of discovery that is a part of your enjoyment of RC electric vehicles.